
Kaposi sarcoma (KS) was first reported in 1872 by 
Moritz Kaposi, a physician and dermatologist. He 
described several cases of a multifocal pigmented sar
coma of the skin in elderly European men, all of who 
died within 2 years1. Four main epidemiological forms of 
KS are now widely recognized (Table 1). The form of KS 
originally identified by Kaposi became known as classic 
KS or sporadic KS. Classic KS occurs mostly in elderly 
men of Mediterranean or Jewish ancestry and, unlike 
the cases originally described by Kaposi, typically shows 
an indolent, protracted clinical course and primarily 
affects skin on the legs. Starting in 1947, several reports 
documented cases of KS in Africa, including a lympha
denopathic form of KS in children2–4; this form of KS is 
now generally referred to as endemic KS. KS came to 
the forefront of public attention at the onset of the AIDS 
epidemic, and the first report of highly aggressive KS 
affecting young men who have sex with men (MSM)5, 
in 1981, occurred just before the realization that these 
men were severely immunodeficient and affected by 
opportunistic infections. This type of KS is now known 
as AIDS related KS or epidemic KS. Note that, although 
KS is more commonly associated with HIV1 infection 
than with HIV2 infection6, we refer to HIV in general 
in this article as it cannot be ruled out that individu
als infected with HIV2 were included in the studies 

discussed. KS also occurs in individuals with iatrogenic 
immunodeficiency, such as that seen in organ transplant 
recipients; this type of KS is known as iatrogenic KS7–9. 
Finally, of note, many cases of KS have been reported in 
MSM without HIV infection10, and KS in MSM with
out HIV infection is increasingly being recognized as a 
possible distinct fifth form of KS11–13.

The cause of KS was not known until 1994 when, on 
the basis of epidemiologic suggestions that this cancer 
had an infectious origin independent of HIV, a directed 
search led to the discovery of the KS herpesvirus (KSHV; 
also known as human herpesvirus8 (HHV8))14. It 
is now known that a combination of KSHV infection 
and impaired host immunity causes KS but, although 
AIDS related KS and iatrogenic KS are associated with 
well defined immunodeficiency, the impaired immune 
function in classic KS (thought to relate to ‘immunosenes
cence’; that is, an ageing immune system) and endemic KS 
(thought to relate to chronic infection and malnutrition) 
is not well characterized. In addition to KS, KSHV causes 
two lymphoproliferative disorders — primary effusion 
lymphoma (PEL)15 and multicentric Castleman disease 
(MCD)16 — and an inflammatory syndrome called KSHV 
inflammatory cytokine syndrome17 (box 1).

In this Primer, we describe the epidemiological and 
clinical features of the different epidemiological forms 
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of KS and discuss our current understanding of the 
pathobiology of this disease. Treatment approaches for 
managing KS and improving quality of life (QOL) will 
also be considered.

Epidemiology
KS was a rare disease before the AIDS epidemic in the 
early 1980s, when the reported incidence of classic KS 
ranged from 0.01 per 100,000 person years for the UK18 
and 0.2 per 100,000 person years for the USA to 1.6 per 
100,000 person years for Sardinia19; incidence was 2–3
fold higher in men than in women globally. Reported 
estimated incidence rates for endemic KS in Africa 
before the AIDS epidemic were higher for Zaire, Uganda, 
Tanzania and Cameroon (>6 per 1,000 person years) 
than in southern and north Africa (0.5–1.5 per 1,000 
person years)20. To date, most studies of KS in Africa 
(comprising endemic and AIDS related KS) reported KS 
as a percentage of all malignancies owing to a scarcity of 
population based studies.

Incidence of KS is reported to currently be ~200
fold higher in recipients of solid organ transplants (that 
is, in iatrogenic KS) than in the general population9. 
Furthermore, rates of iatrogenic KS in transplant recipi
ents positively correlate with the prevalence of KSHV and 
rates of classic KS based on the area where the transplant 
recipient lives, and iatrogenic KS is also associated with 
the male sex and increased age21. Indeed, overall, the geo
graphical variation in the incidence of KS is now known 
to reflect differences in the prevalence of KSHV22 (Fig. 1).

Prevalence of KSHV is highest in sub Saharan Africa, 
where in some populations the prevalence in adults is 
>90%. In the Mediterranean, prevalence is 20–30%, 
and in northern Europe, Asia and the USA, prevalence 

is <10%. The reasons for the geographical variation in 
KSHV prevalence are not understood, but there is some 
evidence that environmental factors, such as co infection 
with malaria and other parasitic infections, may increase 
shedding of KSHV in saliva, thereby increasing trans
mission rates23. Although these co infections were 
reported to increase seropositivity for KSHV23, their 
effect on saliva shedding has not been convincingly 
demonstrated. It is also possible that saliva sharing is 
more common in highly endemic areas, where infection 
is acquired in childhood through practices such as the 
premastication of food for infants, candy sharing among 
children and the sharing of toothbrushes24.

In the early 1980s, one of the first signs of the emerg
ing AIDS epidemic was the frequent occurrence of KS in 
MSM5,25. In the USA, KS was reported to be 20,000 times 
more frequent in patients with AIDS than in the general 
population and to be 300 times more frequent in patients 
with AIDS than in other immune suppressed patient 
groups26. Similar patterns of KS risk were reported in 
Europe and Australia27,28. Subsequent studies in the 
USA and Europe showed that the prevalence of KSHV 
in MSM is higher than the prevalence of KSHV in other 
HIV infected risk groups29. In sub Saharan Africa, the 
incidence of KS has increased around 20fold since  
the onset of the AIDS epidemic in the early 1980s, 
making KS the most common cancer in men, and the 
second most common cancer in women, in countries 
such as Uganda, Malawi, Zimbabwe and Swaziland30,31.

The introduction of combination antiretroviral ther
apy (cART) in 1996 dramatically decreased the incidence 
of AIDS related KS32. Indeed, an international study 
reporting cancer incidence data from 23 prospective 
studies from the USA, Europe and Australia revealed that 

Table 1 | Comparison of the epidemiological forms of KS

Form of KS Clinical presentation Risk factors Progression

AIDS- related 
(also known 
as epidemic)

Multiple cutaneous lesions on the limbs, 
trunk and face. Mucosal lesions are 
common (identified in 20% of patients) 
and visceral involvement is seen in 15% 
of patients. Patients can also present with 
tumour- associated oedema

The risk of KS rises with declining CD4 cell 
counts and falls with the use of cART

May follow an indolent course but 
visceral involvement is not uncommon 
and may be aggressive. It may regress 
with effective cART

Iatrogenic Often presents as cutaneous KS lesions 
but both mucosal and, rarely , visceral 
disease can occur

Occurs following solid- organ allograft; the 
risk of occurrence correlates with the level 
of immunosuppression. Hence, the risk of 
occurrence is higher in multi- organ transplants 
and with greater HL A mismatching

Usually localized but may involve 
organs. It may regress with the 
reduction in immunosuppression 
or with modification of the 
immunosuppressive regimen

Endemic Children often present with multiple 
lymph nodes with lymphoedema and 
a very aggressive natural history of the 
disease, including visceral dissemination. 
Adults present with lower- limb lesions 
that resemble classic KS

Occurs most commonly in sub- Saharan Africa in 
individuals seronegative for HIV

In children, progression is often 
aggressive with widespread 
lymphadenopathy and visceral 
involvement. In adults, progression 
is indolent or locally invasive but 
occasionally has visceral involvement

Classic (also 
known as 
sporadic KS)

Typically confined to lower limbs with 
few lesions. Visceral and mucosal 
disease is rare and usually occurs in the 
gastrointestinal tract

Occurs in middle- aged and elderly individuals 
and is more common in men than in women. 
Ethnic groups from regions of high KS herpesvirus 
prevalence (Middle East, eastern Europe and the 
Mediterranean) are at increased risk

Usually indolent; rarely aggressive and 
disseminated

MSM 
without HIV 
infection

May occur at any skin sites, usually with 
few lesions. Visceral and mucosal disease 
is rare

MSM without HIV infection who are young or 
middle aged and are not immunocompromised

Usually indolent, although 
disseminated disease has been 
described

cART, combination antiretroviral therapy ; HL A , human leukocyte antigen; KS, Kaposi sarcoma; MSM, men who have sex with men.
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the overall incidence of KS in these countries decreased 
from 15.2 per 1,000 person years in 1992 to 4.9 per 
1,000 person years between 1997 and 1999 (reF.33); this 
decrease was driven by a reduction in the number of 
cases of AIDS related KS. The effect of cART on the 
inci dence of AIDS related KS in sub Saharan Africa is 
difficult to quantify because fewer data are available34,35.

A 2017 study, based on over 200,000 patients, 
reported raw KS incidence per 100,000 person years in 
42 cohorts from 57 countries, including North America 
(237 per 100,000 person years), Latin America (244 per 
100,000 person years), Europe (180 per 100,000 person 
years), Asia Pacific (52 per 100,000 person years) and 
South Africa (280 per 100,000 person years)36. KS risk 
was approximately two times higher in heterosexual 
men than in women and six times higher in MSM than 
in women36.

Despite a decrease in the incidence of AIDS related 
KS globally since the introduction of cART, KS con
tinues to occur in patients infected with HIV37,38.  

Changes in the incidence and prevalence of KSHV in 
the HIV and cART era37,39 may result in changes in the 
incidence patterns of all forms of KS, but thus far few 
studies have addressed this. There is some evidence that 
risk groups of individuals presenting with classic KS may 
be changing, as documented by a retrospective cohort 
study of classic KS in Paris between 2006 and 2015 that 
reported that <40% of patients were of Mediterranean 
origin and 28% were MSM13.

Mechanisms/pathophysiology
KS is causally associated with KSHV infection, and 
progress has been made in our understanding of the 
role of this virus in KS pathogenesis. The virus was 
first identified in KS lesions using representational dif
ference analysis, a method that combines subtractive 
hybridization with DNA amplification14.

The viral life cycle
KSHV can infect several different cell types, includ
ing endothelial cells, B cells, epithelial cells, dendritic 
cells, monocytes and fibroblasts40. To gain entry into 
endothelial cells, KSHV is thought to bind to several 
host cell surface receptors such as integrins (including 
α3β1, αVβ5 and αVβ3), the cystine–glutamate trans
porter xCT, heparan sulfate and the tyrosine protein 
kinase receptor EPHA2. This binding induces a signal 
transduction cascade, which results in cellular changes 
that allow the virus to enter the cell and traffic within 
the cytoplasm41–43. As KS tumours express endothelial 
cell markers, endothelial cells are thought to be the 
KSHV infected cell type in KS tumours. The KSHV 
associated lymphoproliferative disorders PEL and 
MCD involve B cell infection by KSHV (box 1). KSHV 
is a linear double stranded DNA virus with an icosa
hedral capsid, a tegument (the space between the enve
lopes and nucleocapsid which contains proteins and 
RNAs) and an envelope42 (Fig. 2). Gylcoproteins in the 
viral envelope interact with cell typespecific cellular 
entry receptors43. Viral entry results in the delivery of 
the virion capsid into the cytoplasm, followed by its 
uncoating and the delivery of the KSHV genome into 
the nucleus. In the nucleus, the genome circularizes, 
remaining as an episome. The virus then enters latency 
(its default pathway) or undergoes sporadic bouts of 
lytic reactivation during the lifecycle of the virus40.

Latency. Similar to other herpesviruses, infection with 
KSHV is lifelong because the virus can establish latency 
in human B cells and endothelial cells. During the 
latent state in cell culture studies, the virus expresses 
the latency locus, which includes ORF71 (also called 
ORFK13; encoding viral FLICE inhibitory protein 
(vFLIP)), ORF72 (encoding vCyclin), ORF73 (encoding 
latency associated nuclear protein (LANA)), ORFK12 
(encoding the kaposins, which are signalling proteins) 
and several microRNAs (miRNAs)44,45. Some additional 
genes, such as K15 and K1 (which encode transmem
brane proteins), as well as viral IL6 (vIL6), are also 
expressed at low levels46–48. The latent genes are expressed 
in most KSHV infected tumour cells and are thought to 
promote tumorigenesis.

Box 1 | Diseases caused by KSHV

Kaposi sarcoma (KS) is an endothelial cell cancer with an inflammatory component and 
highly heterogenous histopathology and clinical behaviour. It is the most common 
disease caused by KS herpesvirus (KSHV).

Primary effusion lymphoma (PEL) is a B cell lymphoma that most commonly affects 
body cavities, including the peritoneal, pleural and pericardial cavities245. PEL can also 
present as solid lesions that form outside of body cavities246. In addition to being 
infected with KSHV, PEL tumour cells are frequently co- infected with Epstein–Barr virus 
(EBV). Despite being of B cell origin, the tumour cells frequently do not express 
immunoglobulin and other B cell antigens, but they express plasma cell antigens.  
The optimal clinical management of KSHV- associated PEL that occurs both within and 
outside of cavities remains uncertain. However, most clinicians would treat patients 
with HIV infection with combination antiretroviral therapy (cART) and combination 
anthracycline- based chemotherapy and patients without HIV infection with 
chemotherapy alone215. The most widely used chemotherapy regimen for PEL is 
probably EPOCH (that is, a combination of cyclophosphamide, doxorubicin, etoposide, 
vincristine and prednisone); however, 1-year overall survival is only ~40%247, and some 
clinicians advocate combinations that include the proteasome inhibitor bortezomib248.

Multicentric Castleman disease (MCD) is a lymphoproliferative disorder presenting 
with generalized lymphadenopathy (that is, lymph nodes that are abnormal in size, 
number or consistency) and systemic symptoms. These symptoms are thought to be 
caused by the excessive production of inflammatory cytokines, such as IL-6 (reF.249). 
Most cases of MCD occur in patients with KSHV and HIV infection; less than half of MCD 
cases are observed in individuals with KSHV infection who do not have HIV infection. 
There are specific pathologic features in the lymph nodes, and KSHV-infected cells can 
be identified that have plasmablastic morphology and express immunoglobulin- λ light 
chains250,251. Patients with HIV infection diagnosed with KSHV-associated MCD should 
be treated with cART and immune- chemotherapy using a stratified approach that is 
based on disease severity. Treatment with rituximab, a monoclonal antibody, is the gold 
standard of care, but chemotherapy (using etoposide or liposomal anthracycline) should 
be added if life- threatening organ failure is present247.

KSHV-positive diffuse large B cell lymphoma, not overwise specified, was previously 
called large B cell lymphoma arising in KSHV-associated MCD; it is a lymphoma subtype, 
composed of cells resembling plasmablasts, that is sometimes, but not always, seen in 
conjunction with clinical and histological features of MCD252. These lymphomas differ from 
PEL in that they lack EBV and are thought to arise from naive immunoglobulin M-λ-positive 
B cells rather than terminally differentiated B cells.

KSHV inflammatory cytokine syndrome is a systemic disease, and patients with this 
disease show symptoms of systemic inflammation and cytokine release without any 
evidence of generalized lymphadenopathy or histological features of MCD in lymph 
node biopsies. These patients frequently have other KSHV- associated tumours, such as 
KS or PEL, and have a poor outcome, with a median survival of 13 months253. It is unclear 
how best to treat this disease.
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The latent KSHV genome forms an episome, which 
is tethered by the KSHV LANA to the host chromo
some so that the viral genome is replicated with the 
host genome during normal cell division49. The protein 
products of other latent genes support the survival of the 
infected cell. For example, vFLIP activates I κB kinase 1  
(IKK1) to stimulate the nuclear factor κB (NF κB) 

pathway to increase cell survival50–53. The viral miRNAs 
that are encoded during KSHV latency45,54,55 help keep 
the infected cell alive, by inhibiting apoptosis, and the 
virus latent56; these viral miRNAs are expressed in KS, 
PEL and MCD57–59. Furthermore, similar to kaposin, 
KSHV mir K1210a possesses in vitro transforming 
abilities in NIH 3T3 cells and is contained within the 

a
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Fig. 1 | Geographical prevalence of KS and seroprevalence of KSHV. a | The age- standardized incidence rate of Kaposi 
sarcoma (KS) per 100,000 males is depicted, and rates (apart from for the USA) were obtained from the International 
Agency for Research on Cancer (IARC) Cancer Incidence in Five Continents Volume X1 and ‘Cancer Today’ Global Cancer 
Observatory resources255,256. The rate provided for the USA is an average for 2000–2015 (0.7 affected individuals per 
100,000 males) and rates are from Surveillance, Epidemiology , and End Results (SEER). However, rates in some regions 
based on the population reported are higher than others, ranging from 1.7 affected individuals per 100,000 males (for 
Atlanta) to 0.1 affected individuals per 100,000 males (for Iowa and Utah). Overall rates in the USA show racial disparities: 
among non- Hispanic white individuals, white Hispanics and black individuals, the incidence rate is 0.4, 0.7 and 1 affected 
individual per 100,000 males, respectively. b | Seroprevalence rates were compiled from multiple studies6,39,180,257–294. 
The seroprevalence of KS herpesvirus (KSHV) infection in northern Europe, Asia and the USA is <10%, but in most of 
sub-Saharan Africa, overall seroprevalence is >40%. The Mediterranean region (that is, Italy , Sicily and Sardinia) has 
intermediate seroprevalence rates of 10–30%. Figure adapted from reF.22, Springer Nature Limited.
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open reading frame of kaposin60. Several KSHV miRNAs 
also promote endothelial cell reprogramming61, and 
KSHV miRK123 induces the migration and inva
sion of endothelial cells by activating protein kinase B 
(AKT)62. Finally, KSHV miRK9* targets the transcript of 
the major lytic switch protein (replication and transcrip
tion activator (RTA; also known as ORF50)) to prevent 
reactivation from latency63.

Of note, the expression of several of the KSHV latent 
genes and miRNAs in B cells predisposed mice to lym
phomas and hyperplasia64–67, and the protein product 
of at least one of these latent genes, vFLIP, promotes 
vascular proliferation and an inflammatory phenotype 
when expressed in endothelial cells68. There have been 
attempts to target some of these latent viral proteins to 
inhibit their function, as exemplified by the inhibition of 
vFLIP with inhibitory peptides69,70, but these have been 
in experimental models in cell culture that have not 
reached clinical feasibility. Inhibitors of vFLIP have also 
been sought in cell based drug screening assays using 
NF κB reporter PEL cell lines. However, these assays 
identified a small molecule that selectively treats PEL 

independently of vFLIP inhibition and does not target 
vFLIP in KS71. A number of studies have been aimed at 
targeting cellular genes that are activated by viral pro
teins to kill KSHV infected cells, which is a practical 
approach as drugs that are already in clinical use for 
other diseases can be screened. An example is the use 
of rapamycin (also known as sirolimus), because the 
mechanistic target of rapamycin (mTOR) pathway is 
activated in latently infected tumour cells in both PEL 
and KS72–74. Another example is the use of HSP90 inhib
itors, given that HSP90 chaperones vFLIP and LANA 
as well as members of the NF κB, AKT and apoptosis 
pathways75,76.

The lytic cycle. The physiological stimuli that allow 
spontaneous reactivation of KSHV from latency are not 
well defined. However, it is clear that KSHV undergoes 
spontaneous lytic reactivation sporadically throughout 
the lifetime of the host. The lytic phase, during which 
viral genes are expressed in a temporal order, allows the 
replication of the viral genome and the production of 
infectious viral progeny. Immediate early (IE) genes are 
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↑  NF-κB signalling
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Fig. 2 | The viral life cycle of KSHV. The Kaposi sarcoma herpesvirus (KSHV) virion binds to receptors present on the cell 
surface (such as integrins, the cystine–glutamate transporter (xCT), CD98 and heparan sulfate) via glycoproteins (such as 
gpK8.1, gB, gM–gN and gH–gL) on its envelope; this binding, in most cases, results in the endocytosis of the virion into 
the cell42. The virion uncoats itself in the cell cytoplasm, and the capsid containing the viral genome traverses to the 
nucleus. The viral genome enters the nucleus, where it can remain latent as a circular episome tethered to host 
chromosomes via its latency- associated nuclear protein (L ANA), or it can enter the lytic cycle where the viral genomes 
are replicated and new virions are produced through a complex mechanism of envelopment and ultimately released 
from the cell via budding. Note that KSHV proteins can increase host signalling through the phosphoinositide 3-kinase 
(PI3K), mitogen- activated protein kinase (MAPK) and nuclear factor- κB (NF- κB) signalling pathways. RTA , replication and 
transcription activator.
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expressed first. The protein products of most IE genes 
control transcription and the key lytic protein — RTA — 
is encoded by an IE gene. RTA is a viral transcription fac
tor that activates many viral and cellular promoters42 and 
ensures the expression of viral genes required for viral 
replication. Delayed early (DE) genes and late genes are 
expressed after IE genes42. Many of the DE genes encode 
proteins that control viral DNA replication, which takes 
place after the DE phase, occurs through a rolling cir
cle mechanism and produces linear genomes that are 
packaged into capsids42. The late lytic phase results in 
the expression of all of the viral structural proteins and 
in the production of the infectious virus.

Similar to the protein products of latency genes, the 
protein products of lytic genes can contribute to tumori
genesis. However, in contrast to latent genes that are  
expressed in all tumour cells, lytic genes and the encoded 
viral proteins are produced only by a very low propor
tion of tumour cells42. Some lytic proteins may act in 
a paracrine fashion to stimulate tumour growth. For 
example, KSHV vIL6 protein has been detected in the 
sera of patients with KS, PEL and MCD77, and the KSHV 
G protein coupled receptor (vGPCR; a chemokine trans
membrane receptor homologue) can constitutively 

(that is, in the absence of a ligand) induce cellular sig
nalling in cell culture and mouse models, leading to the 
expression of pro inflammatory and angiogenic factors, 
including vascular endothelial growth factor (VEGF) 
and platelet derived growth factor (PDGF)78–80. Notably, 
vGPCR can induce vascular lesions in mice, even when 
expressed in small numbers of cells81–83, which is consist
ent with a model of paracrine oncogenesis84. However, 
expression of this protein has never been documented 
in human KS, although the K1 protein is thought to be 
expressed in a subset of KS tumours85.

The expression of KSHV lytic genes has been clini
cally targeted in both KS and MCD. In MCD, lytic viral 
replication can be prevented with zidovudine and val
ganciclovir. These inhibitors are prodrugs that are phos
phorylated by the viral kinases ORF21 and ORF36 to 
produce their active forms86. Treatment with a combina
tion of zidovudine and valganciclovir has yielded a clinical 
response of >80% in MCD, in which lytic viral replication 
appears to be consequential86. However, evidence that 
this approach is effective in patients with KS is limited. 
In patients with AIDS given ganciclovir to treat cyto
megalovirus retinitis, the subsequent chance of develop
ing KS was decreased by 75% compared with patients with 
cytomegalovirus retinitis not treated with ganciclovir87. 
However, another study showed that valganciclovir 
did not induce the regression of classic KS, highlight
ing that inhibiting the lytic replication of KS has not  
universally been useful in the treatment of KS88.

Modulating host signalling pathways
As alluded to above, to survive and persist in its host, 
KSHV has evolved to modulate many host cell signal
ling pathways, including the phosphoinositide 3kinase 
(PI3K)–AKT–mTOR pathway, the mitogen activated 
protein kinase (MAPK) pathway and the NF κB path
way42. These pathways are activated by multiple KSHV 
viral proteins (see below), which suggests that they are 
critically important for the virus. Furthermore, all of 
these pathways promote cell survival and cell prolifer
ation and are upregulated in many different cancers. 
In short, the virus has chosen to target pathways that 
presumably allow for the survival of virus infected cells.

The PI3K–AKT–mTOR pathway is activated in 
patients with KS or PEL72,73 by viral proteins including 
KSHV vIL6, vGPCR, K1, K15, ORF45 and ORF36 
(reFs89–91) (Fig. 3). KSHV K1 and vGPCR can immor
talize and transform endothelial cells and fibroblasts, 
respectively79,85,92. Furthermore, KSHV K1 can activate 
Sykrelated tyrosine kinase (SRK) and PI3K–AKT sig
nalling85,93,94 to increase the survival of KSHV infected 
cells95, and vGPCR can activate PI3K–AKT signalling96,97 
to induce KSlike lesions in a number of mouse  
models81–83. KSHV K15 activates the MAPK/ERK kin
ase 1 (MEK1)/MEK2–extracellularsignalregulated  
kinase 1 (ERK1)/ERK2 pathway in a TNF receptor 
associated factor 2 (TRAF2)dependent manner98, and 
it can interact and activate phospholipase C, γ1 (PLCγ1) 
to induce angiogenesis99. KSHV vGPCR can also activate 
MEK1/MEK2–ERK1/ERK2 signalling100.

KSHV vIL6 is a viral homologue of human IL6. 
Human IL6 (hIL6) must bind both membrane 
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Fig. 3 | Modulation of host signalling pathways by KSHV- encoded proteins. A graphic 
representation illustrates how Kaposi sarcoma herpesvirus (KSHV) representative viral 
proteins (in orange) modulate host cellular signalling proteins (in blue) to promote cellular 
survival and the inhibition of apoptosis. Viral proteins including KSHV K15, K1, viral G 
protein- coupled receptor (vGPCR) and viral IL-6 (vIL-6) can activate the phos phoinositide 
3-kinase (PI3K)–protein kinase B (AKT)–mechanistic target of rapamycin (mTOR) pathway , 
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N-terminal kinase (JNK). Some of the KSHV viral proteins, such as vGPCR , K1 and K15, also 
activate the extracellular- signal-regulated kinase 1 (ERK1)–ERK2 pathway to promote 
protein synthesis through the activation of ribosomal S6 kinase (RSK; which in turn 
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γ1; SRK , Syk- related tyrosine kinase; S6KB1, ribosomal protein S6 kinase.
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glycoprotein 130 (gp130) (one subunit of the type I 
cytokine receptor) and IL6α chain to activate B cell 
signalling pathways whereas vIL6 can activate these 
pathways by binding gp130 alone101. KSHV vIL6 also 
activates the JAK–STAT, MAPK–ERK, and PI3K–AKT 
pathways upon binding to gp130 (reF.102). Interestingly, 
transgenic mice expressing vIL6 develop an MCD like 
disease103.

KSHV ORF36 encodes a serine/threonine viral pro
tein kinase (vPK) that is expressed under conditions 
of hypoxia to activate Jun N terminal kinase (JNK), a 
stress kinase that belongs to the MAPK family90,91,104. vPK 
appears to resemble cellular ribosomal protein S6 kinase 
(S6KB1; a kinase downstream of AKT–mTOR complex 1 
(mTORC1) signalling) and to phosphorylate ribosomal 
protein S6 in vitro to increase protein synthesis and aug
ment anchorage independent growth, angiogenesis and 
cell proliferation91. In addition, KSHV vPK transgenic 
mice develop lymphomas105. Another protein, KSHV 
ORF45, binds to cellular ribosomal S6 kinase 1 (RSK1) 
and RSK2, stabilizing its interaction with ERK and pre
venting its dephosphorylation, which is important for 
lytic replication90.

As mentioned above, KSHV vFLIP is a potent 
activator of the pro survival NF κB pathway52,106,107; 
it activates NF κB by interacting directly with NF κB 
essential modulator (NEMO; also known as IKKγ)51,53. 
Indeed, small interfering RNA (siRNA)mediated deple
tion of vFLIP in PEL induces apoptosis, suggesting 
that vFLIP enhances cell survival52,108. Mice expressing 
vFLIP in the B cell compartment displayed MCD like 
abnormalities67, whereas those expressing vFLIP in 
the endothelial compartment had a pro inflammatory 
phenotype and some vascular abnormalities68.

Thus, KSHV encodes a multitude of proteins that 
modulate host cell signalling pathways to allow cell sur
vival and cell proliferation and to augment viral repli
cation. Although a number of these viral proteins are 
expressed, or highly induced, only during lytic replica
tion, their expression leads to the production of secreted 
cytokines and growth factors that can influence neigh
bouring cells to induce angiogenesis and inflammation, 
thereby contributing to KS pathogenesis84.

KSHV and the immune system
Similar to other herpesviruses, KSHV establishes a deli
cate balance between activating and suppressing the 
immune response to establish a latent infection that lasts 
for the entire life of the infected host. Humoral and cellu
lar immune responses to KSHV are evident, as reflected 
by the much higher incidence of KSHV infection in 
patients with immunodeficiencies than in individuals 
with an uncompromised immune system. Humoral 
responses were described soon after KSHV was discov
ered as the causative agent of KS and PEL. Specifically, 
PEL cell lines were positive for immunofluorescence 
when stained using patient sera; this nuclear staining 
was later shown to be LANA. Furthermore, when cells 
were induced to undergo lytic replication, patient sera 
strongly stained the cytoplasm of PEL cell lines consist
ent with it recognizing lytic antigens109. Subsequently, 
a large number of seroepidemiologic studies using 

enzyme linked immunosorbent assay (ELISA) relied 
on the presence of antibodies to a number of recombi
nant viral proteins29. Among the latent KSHV proteins, 
LANA seems to be most immunogenic, and among 
the lytic proteins, K8.1 has been used in most serologic 
assays. Systemic analysis of antibodies to all KSHV 
proteins showed that ORF38, ORF61, ORF59 and K5 
elicited detectable responses in individuals with KSHV 
associated diseases110. However, antibodies to KSHV are 
rarely neutralizing111.

To assess cellular responses to KSHV, a systematic 
approach was recently used in which the whole KSHV pro
teome was examined by IFNγ enzymelinked immuno
spot (an immunoassay that measures the frequency of  
cytokinesecreting cells at the single cell level)32. This 
study found variable responses of both CD4 and CD8 
cells to a wide variety of viral antigens, indicating a lack 
of shared immunodominance among individuals.

In this subsection, we review the cell intrinsic mech
anisms used by KSHV to induce an immune response 
while, at least temporarily, simultaneously avoiding 
immune recognition to establish lifelong infection.

Triggering an antiviral immune response. Following 
viral entry or reactivation, the host mounts an immune 
response to KSHV via innate immune receptors such as 
Toll like receptors (TLRs), retinoic acid inducible gene I  
protein (RIG I)like receptors (RLRs), nucleotide 
binding and leucine rich repeat or Nod like receptors 
(NLRs), AIM2like receptors (ALRs) and cyclic GMP 
AMP synthase (cGAS)–stimulator of interferon genes 
protein (STING)112. TLRs are the first line of defence 
against many viruses; accordingly, KSHV activates TLR3 
(reF.113), TLR4 (reF.114) and TLR9 (reF.115) in a celltype 
dependent manner, as well as the NLR proteins NOD, 
LRR and pyrin domain containing 1 (NLRP1) and 
NLRP3, upon primary infection116. Moreover, the AIM2 
family member IFI16 induces activation of the inflam
masome upon KSHV infection117, and KSHV activates 
the cGAS–STING pathway during primary infection 
and reactivation118. Activation of TLRs and RLRs gen
erally leads to the induction of type I interferon, which 
is considered antiviral. Furthermore, the activation of 
NLR dependent inflammasomes leads to the production 
of pro inflammatory cytokines such as IL1β and IL18. 
However, despite activating multiple innate immune 
receptors, KSHV persists for a lifetime in the infected 
host by encoding both lytic and latent proteins that 
inhibit host innate and adaptive  immunity (Fig. 4).

Evading the immune response. KSHV K3 and K5 are 
lytic genes that encode modulator of immune recog
nition 1 (MIR1) and MIR2, respectively, both of which 
inhibit major histocompatibility complex (MHC) class I  
antigen presentation to prevent the immune system 
from detecting KSHV infected cells119. MIR1 downreg
ulates all four of the human leukocyte antigen (HLA) 
gene alleles or allotypes (HLA- A, HLA- B, HLA- C and 
HLA- E) and MIR2 downregulates HLA- A and HLA- B120.

KSHV homologues of interferon regulatory factors 
(IRFs), viral IRFs (vIRFs), are lytic proteins that inhibit 
type I interferons. The KSHV genome encodes four 
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vIRFs: vIRF1, vIRF2, vIRF3 and vIRF4 (reF.121). At the 
transcriptional level, vIRF1 binds cellular IRF1 and IRF3 
to prevent them from transactivating the promoters of 
interferon genes122 and binds STING to inhibit cGAS–
STING signalling and IFNβ induction123. KSHV ORF52 
and LANA also inhibit the cGAS–STING pathway, but by 
targeting cGAS instead of STING124,125. vIRF2 impairs the 
induction of interferon gene expression by binding IRF1 
and IRF3 to inhibit cellular IRF1mediated and IRF3
mediated transcription126. Finally, vIRF3 binds IRF3 and 
IRF7 and prevents them from transactivating the pro
moters of IFNα4 and IFNα6 (reF.127). vIRF3 also damp
ens IFNγ mediated activation of the GAS promoter128. 
KSHV vIRF1 and vGPCR downregulate expression of 
TLR4 (reF.114), and RTA was reported to inhibit TLR2 
dependent NF κB activation129; RTA can also induce 
the ubiquitylation and degradation of IRF7 (reF.130). 
KSHV vIRF1 and vIRF2 expression reduced the level 
of IFNβ, both at the mRNA and protein level, follow
ing TLR3 activation121. KSHV ORF45 impairs IRF7 

phosphorylation131 and KSHV vIL6 can be directly  
activated by IFNα to block interferon induction132.

In terms of RLRs and NLRs, KSHV ORF64 is a 
viral deubiquitinase that can deubiquitinate RIG I to 
prevent RIG Imediated interferon induction133, and 
the KSHV tegument protein ORF63 inhibits the NLR 
inflammasomes, NLRP1 and NLRP3 (reF.116).

KSHV also encodes three CC chemokine ligands 
(CCLs; formerly known as vMIPs): vCCL1 (encoded 
by ORFK6), vCCL2 (encoded by ORFK4) and vCCL3 
(encoded by ORFK4.1)134, which can negatively regulate 
inflammation. vCCL2 interacts with host CC chemo
kine receptors (CCRs), including CCR1, CCR2, CCR5, 
CXC chemokine receptor 1 (CXCR1), CXCR2 and 
CXCR4, to inhibit signalling from them. For example, 
vCCL2 prevents host CCL5 (also known as RANTES) 
and host CCL3 (also known as MIP1α) from bind
ing to CCR5 (reFs135,136). vCCL2 also inhibits CD8 
T cell migration and hinders cytotoxic T lymphocyte 
mediated rejection of corneal and cardiac allografts 
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proteins that modulate multiple innate immune pathways. KSHV viral interferon regulatory factor 1 (vIRF1), viral G 
protein- coupled receptor (vGPCR) and replication and transcription activator (RTA) can downregulate Toll- like receptor 2 
(TLR2) and TLR4, and TRIF (also known as TIR domain- containing adaptor molecule 1 (TICAM1)), a TLR adaptor protein,  
is further inhibited by KSHV RTA. Inhibition of these TLR signalling pathways results in the downregulation of the type I 
interferon response. Ubiquitylation of the RNA sensor, retinoic acid- inducible gene I protein (RIG- I), which is crucial for  
its activation, is inhibited by KSHV ORF64, resulting in the dampening of RIG- I activity and inhibition of the interferon 
response. KSHV vIRFs and ORF45 can inhibit activation of cellular IRFs such as IRF3 and IRF7. Cyclic GMP- AMP synthase 
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differentiation primary response protein MyD88; NF- κB, nuclear factor- κB; NLR , Nod- like receptor ; TRAF3, TNF  
receptor- associated factor 3; Ub, ubiquitin.
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in an experimental model137. vCCL1 and vCCL2 also  
promote endothelial cell survival and virus replication138, 
which could play a role in KS pathogenesis.

Finally, the KSHV K14 gene encodes for a viral OX2 
(vOX2), an immunoglobulin superfamily member with 
homology to the cellular OX2 membrane glycoprotein 
(OX2; also known as CD200) that binds to the receptor 
CD200R139. Both stimulatory and tolerogenic roles for 
cellular OX2 in presentation of the antigen have been 
proposed140,141. KSHV vOX2 fused to a crystallizable 
fragment (Fc) antibody domain suppressed neutrophil 
activation, decreased CCL2 (also known as MCP1) and 
IL8 production and inhibited oxidative burst in neutro
phils stimulated to undergo phagocytosis142. However, 
purified glycosylated vOX2 protein stimulated primary 
monocytes, macrophages and dendritic cells to express 
inflammatory cytokines including IL1β, IL6, monocyte 
chemoattractant protein 1 and TNF143. This induction of 
inflammatory cytokines may contribute to the inflam
matory infiltrates seen in KS if vOX2 is expressed in cells 
in the lesions that are undergoing lytic replication.

Diagnosis, screening and prevention
Clinical manifestations
The clinical manifestations of the epidemiological forms 
of KS overlap, although certain characteristics are more 
commonly associated with one form of KS than with 
others. In all forms of KS, cutaneous lesions usually 
present as multiple, pigmented, raised or flat, painless 
lesions that do not blanch (that is, they do not lose col
our with pressure) (Fig. 5). The earliest cutaneous lesions 
are often asymptomatic, innocuous looking, pigmented 
macules or small papules that vary in colour from pale 
pink to vivid purple. Although KS is often diagnosed 
on the basis of the characteristic appearance of lesions 

alone, the diagnosis should be confirmed histologically 
because even experienced clinicians can misdiagnose 
KS144. Larger plaques on the trunk often follow the skin 
creases as oblong lesions. Occasionally, lesions form 
exophytic, ulcerated and bleeding nodules that can be 
associated with painful oedema.

In AIDS related KS, oral lesions (that is, in the pal
ate and on gums) are common and may lead to dyspha
gia and secondary infection. Endemic KS is frequently 
associated with lymphoedema in African children and 
young adults, regardless of HIV status, and is difficult 
to control145. Finally, visceral lesions frequently can 
occur in the lungs and gastrointestinal tract and do so 
mostly in individuals with AIDS related KS. Pulmonary 
lesions, which usually present with dyspnoea, dry cough 
and sometimes haemoptysis, with or without fever, are 
life threatening. These lesions typically appear as a dif
fuse reticulo nodular infiltrate and/or pleural effusion 
on chest radiography. Gastrointestinal lesions are usu
ally asymptomatic, but may bleed or cause obstruction, 
and their presence is usually confirmed at endoscopy. 
Nevertheless, visceral lesions with KS are uncommon 
(in one study, only 15% of 469 patients had visceral 
lesions upon diagnosis with AIDS related KS)146, and CT 
scans, bronchoscopy and endoscopy are not warranted 
in patients in the absence of symptoms indicative of 
 visceral lesions.

To date, the staging of KS has not been unified or 
incorporated into the American Joint Committee on 
Cancer (AJCC) tumour, node and metastasis (TNM) 
staging system. Instead, the modified AIDS Clinical 
Trials Group (ACTG) staging classification, which is 
based on tumour, immune status and systemic illness 
(TIS), is used for AIDS related KS147,148 (Table 2), and the 
classification of classic KS focuses only on the tumour 
and originated from a case series of 300 patients149 
(Table 3). There are no specific staging systems for 
endemic or iatrogenic KS.

Diagnosis
Pathologic diagnosis. When there is clinical suspicion 
of KS, a biopsy sample is taken to confirm the diagno
sis histologically. Although this is straightforward in 
resource rich settings, the process can be challenging 
in resource limited settings, such as in Africa, where 
KS is most common, and macroscopic clinical visual
ization is often the only available means for diagnosing 
KS. Indeed, in one study from East Africa, visual diag
nosis alone had only 80% positive predictive value for 
KS150; some patients were falsely diagnosed with KS, 
giving them an indication for needless chemotherapy 
and missing the correct, often easily treatable, diagno
ses (for example, bacillary angiomatosis)151. To remedy 
this, several efforts have been aimed at increasing the 
histologic diagnosis of KS, including task shifting 
the performance of biopsies to non physicians152 as well 
as teledermatology and telepathology153.

Pathologic diagnosis of KS can often be made using 
conventional haematoxylin and eosin (H&E) staining 
alone to assess for several basic features of KS that are 
present, to varying degrees, in all cases of the disease. 
These features include vascular proliferation in the 

a c

d e

b

Fig. 5 | Clinical manifestations of KS. Different manifestations of Kaposi sarcoma (KS) 
include (part a) macular lesions on the back and nodules on the arm; (part b) extensive KS 
plaques on the legs with tumour- associated oedema; (part c) exophytic KS lesions on the 
foot; (part d) extensive gingival KS nodules; and (part e) flat, violaceous lesions on the 
hard palate. The image in part c is of a patient with classic KS; all other images are of 
patients with AIDS- related KS.
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dermis (with the formation of slit like spaces that are 
not lined by endothelium), an increased number of ves
sels without an endothelial cell lining, the presence of 
extravasated blood resulting in the formation of hyaline 
globules and haemosiderin accumulation and an inflam
matory infiltrate (Fig. 6). Spindle cell proliferation is also 
a typical feature of KS. These spindle cells, which are 
characterized by elongated cytoplasm and nuclei and 
sometimes contain haemosiderin and hyaline inclusions, 
express endothelial markers and are considered to be the 
KS tumour cell. Although spindle cells are usually seen 
in sheets or fascicles (Fig. 6b), they may be difficult to 
distinguish in early lesions (Fig. 6c).

Pathologic classification has been described as 
including the following stages of tumour progression, 
which roughly correspond to the clinical appearance 
of the skin lesions (that is, morphotypes); however, fre
quent overlap between the stages exists, and it is unclear 
whether these stages occur in sequential order (note that 
pathologic stages are different from the clinical staging 
described in Table 2 for AIDS related KS)154.

Macule or patch KS lesions may be the most diffi
cult to distinguish histologically from other conditions 
as, although many of their features are evident on H&E 
staining alone, they can mimic other inflammatory 
skin disorders such as minor vascular anomalies and 
inflammatory conditions (Fig. 6c,d). Macule or patch KS 
lesions are characterized by a patchy, sparse perivascu
lar infiltrate composed of lymphocytes and plasma cells; 
red blood cell (RBC) extravasation and siderophages 
(macrophages containing iron (that is, haemosiderin)); 
narrow cords of cells between collagen bundles; and, 
sometimes, fascicles of spindle cells.

Plaque KS lesions are characterized by a diffuse infil
trate of vessels throughout the dermis, with fascicles of 
spindle cells replacing the dermal collagen. Vascular 
spaces usually have jagged outlines and separate colla
gen bundles. There is commonly extravasation of RBCs 
with siderophages. Inflammatory infiltrate includes 
numerous macrophages, lymphocytes and, frequently, 
plasma cells.

Nodular KS lesions have the most distinct histology. 
They are characterized by well defined nodules com
posed of sheets of spindle cells that replace the dermal 
collagen (Fig. 6e). A honeycomb like pattern of vascular 
spaces filled with RBCs is frequently seen closely asso
ciated with interweaving spindle cells. Pseudovascular 

spaces, where RBCs appear to directly contact spindle 
cells, are common. There is RBC extravasation, with 
siderophages and hyaline globules that are eosinophilic 
spheres 1–7 μm in diameter. Advanced cases of KS, such 
as the anaplastic variant, can display sheets of atypical 
spindle cells that mimic other sarcomas; in these cases, 
immunohistochemistry can aid diagnosis154.

The role of immunohistochemistry in diagnosing KS. 
KS lesions have a heterogeneous cellular composition. 
Immunohistochemistry of the spindle cells using anti
bodies against vascular endothelial markers such as 
CD34 revealed that they have a vascular nature, and the 
subsequent detection of lymphatic endothelial markers 
in the spindle cells, such as podoplanin, LYVE1 and 
VEGF receptor 3, suggested that KS has a lymphatic 
endothelial cell origin155,156. However, KS lesions also 
express mesenchymal markers, such as vimentin157, and 
a mesenchymal origin of KS was recently proposed158. 
Most immunohistochemical evidence and gene expres
sion and experimental data currently suggest that 
the spindle cells are lymphatic endothelial, vascular 
endothelial and/or mesenchymal cells that undergo 
reprogramming following KSHV infection to produce 
cells with an aberrant combined immunophenotye158,159. 
In addition to lymphocytes and plasma cells, histio
cytes (that is, tissue macrophages) are abundant in KS 
lesions, and these can be identified with immunohisto
chemistry160,161. These immunohistochemical markers 
have aided our understanding of the cellular composi
tion of KS and may still help in the differential diagnosis 
of KS in rare and complicated cases.

Immunohistochemical stains for antigens of KSHV 
(in addition to conventional H&E stains) are very useful 
in diagnosing KS. Specifically, antibodies that recognize 
KSHV LANA can be used in routine histopathology to 
confirm a KS diagnosis in difficult cases, and these are 
routinely used in many resource rich pathology settings. 
Immunohistochemistry for LANA is particularly use
ful in diagnosing KS presenting with early macular or 
patch KS lesions or lesions that resemble other sarcomas. 
However, although LANA is thought to be expressed in 
every infected cell, the proportion of infected cells is 
variable, ranging from <10% to >90% of the total cell 
population in the lesional areas (Fig. 6d,f). Furthermore, 
LANA immunohistochemistry should be considered 
positive only when a distinct punctate nuclear pattern 
is seen, which prevents LANA staining from being con
fused with cytoplasmic haemosiderin or melanin when 
using a brown chromogen. Although LANA positivity 
confirms a diagnosis of KS, a negative stain may not rule 
out KS as sampling errors or false negatives can result 
from poor tissue preservation or other technical arte
facts. Thus, whether a positive LANA stain is required to 
establish a diagnosis of KS is controversial and depends 
on specific circumstances.

Molecular diagnosis. When examined with sensitive 
nucleic acid amplification techniques, KS lesions almost 
always contain KSHV DNA. Indeed, a review in 2009 of 
>25 studies found that KSHV DNA is detected by PCR 
in >95% of all epidemiologic forms of KS29. Whether the 

Table 2 | The modified AIDS Clinical Trials Group staging of AIDS- related KS

TIS staging of KS Good risk (T0) Poor risk (T1)

Tumour Confined to skin and/or 
lymph nodes, or minimal oral 
disease

Tumour- associated oedema or 
ulceration, extensive oral KS, 
gastrointestinal KS or KS in other 
non- nodal viscera

Immune statusa CD4 cell count >150 per mm3 CD4 cell count <150 per mm3

Systemic illness Karnofsky Performance 
Status >70b

Karnofsky Performance Status 
<70b or other HIV- related illness

KS, Kaposi sarcoma; TIS, tumour, immune status and systemic illness. aThe original description of 
immune status used a cut- off of 200 CD4 cells per mm3; the post hoc analysis found a cut-off of 150 
CD4 cells per mm3 to be a better indicator of risk; however, in the era of highly active antiretroviral 
therapy , it is not clear that CD4 count is a prognostic factor147,148. bThe Karnofsky Performance Status 
Scale, which ranges from 100 (best) to 0 (worst), assesses functional impairment295.
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pathologic evaluation of the KS cases deemed negative 
for KSHV by PCR would result in 100% of KS cases 
being diagnosed is unknown. Regardless, the detec
tion of KSHV DNA by PCR is highly, if not optimally, 
sensitive for KS, and the absence of KSHV DNA in a 
well prepared sample essentially excludes the diagno
sis. Except for in research laboratories, however, PCR 
for KSHV DNA is currently available only in a few 
highly specialized clinical molecular pathology labora
tories. The specificity of detecting KSHV DNA is less 
clear, especially in KSHV endemic geographic regions 
(for example, Africa), where up to 60% of persons in 
the general community are positive for KSHV antibod
ies. Data in this regard are very limited (14% of archi
val specimens from individuals without KS in Uganda 
were positive for KSHV DNA162), but they suggest that 
a quantitative threshold of KSHV DNA may distin
guish KSHV DNApositive individuals with KS from 
KSHV DNApositive individuals without KS. If so, the 
automated objective molecular diagnosis of KS could 
conceivably be performed at the point of clinical care 
and, in large part, remove the expense and subjectivity 
of histopathologic diagnosis.

A similar approach has been implemented for tuber
culosis with the GeneXpert platform (from Cepheid). 
A novel point ofcare device for KS diagnosis, which 
features multiple energy sources for use in areas where 
electricity is limited, is under development9,163–165. The 
latest stage of this device, which is called TINY (Tiny 
Isothemal Nucleic acid quantifications sYstem), relies 
on isothermal amplification and can be heated via elec
tricity, sunlight or flame165. Pilot testing of this device  
in Uganda showed that KSHV DNA could be detected in  
KS biopsy samples in <3 hours after applying anaes thesia 
to the patient165. Broad implementation of this device 
could enable a definite diagnosis of the patient while still 
in the clinic rather than weeks later when relying on a 
pathologic diagnosis. A device such as TINY may lead to 
earlier diagnosis and prevent loss to followup.

Screening
The current status of KS screening. Unlike for some 
cancers, there is no pre neoplastic stage of KS for 
which screening can be performed. Furthermore, con
ventional screening by health care practitioners for estab
lished KS before the development of clinical symptoms is 
of limited use because KS usually occurs first on visible 
skin and/or mucous membranes166 and is thus initially 
observed by patients themselves. The exception is KS in 
the oral cavity, which could benefit from screening as it 
is often the first anatomic site of involvement in AIDS 
related KS and might be missed by the patient. Other than 
screening for oral KS, the only other conceivable means 
of screening for preclinical KS would be to evaluate the 
lower respiratory tract or gastrointestinal tract for visceral 
lesions. Methods to perform such screening, however, are 
nonspecific (chest radiography or chest CT), expensive or 
associated with potential adverse events (bronchoscopy 
and endoscopy). Given that it is rare for KS to be pres
ent in visceral organs and not on visible mucous mem
branes or skin166, screening of the lower respiratory tract  
and gastrointestinal tract is not recommended.

Benefit of early diagnosis. Although a role for the for
mal screening for preclinical KS is limited (that is, it is 
useful only in the detection of lesions in the oral cavity), 
much could be gained by early detection of clinically 
apparent KS; preclinical screening and early detection 
of clinically apparent KS can be thought of as one inter
vention. Despite not being universally defined, early 
KS is generally agreed to be mild to moderate disease 
without symptomatic visceral symptoms, lymphatic 
obstruction or function altering oedema, difficulty  
swallowing or chewing or any other functionally dis
abling manifestation167. An important rationale behind 
early detection is that early KS has a better clinical out
come than KS that is detected at a later stage. Indeed, 
even before cART, the stage at which KS was diagnosed 
was predictive of survival; patients with AIDS related 
KS in the USA diagnosed with T0 tumours had a 
1year greater median survival than patients diagnosed 
with T1 tumours147 (Table 2). The availability of cART 
has markedly improved the overall prognosis of KS, 
but the stage of KS at presentation remains similarly, 
if not more, important prognostically. In one of the 
lar gest studies of prognosis in the cART era, among  
211 patients with AIDS related KS in Italy, those with T1 
disease at diagnosis had a 2.6fold greater rate of death 
than those with T0 disease at diagnosis168. Among Swiss 
patients with AIDS related KS, those with T1 disease at 
diagnosis had a 5.2 fold greater rate of death or need of 
chemotherapy than patients with T0 disease at diagno
sis169. One study from South Africa found that individ
uals with T1 disease had a 2.4fold higher mortality than 
individuals with T0 disease170.

Although the observational studies discussed suggest 
that the early detection of KS is clinically beneficial, and 
this is known to be the case for other cancers, these bene
fits have not been tested in randomized trials. This lack 
of randomized trials might explain why the evidence 
based clinical guidelines of most national and interna
tional normative bodies for KS have not emphasized or 
mentioned early detection of the disease (although there 

Table 3 | Staging of classic KS

Stage Description Features

Stage 1a Maculonodular Small macules and 
nodules primarily confined 
to the lower extremities

Stage 2a Infiltrative Plaques mainly involving 
lower extremities, 
sometimes associated 
with a few nodules

Stage 3a Florid Multiple angiomatous 
plaques and nodules 
involving the lower 
extremities that are often 
ulcerated

Stage 4 Disseminated Multiple angiomatous 
nodules and plaques 
extending beyond the 
lower extremities

KS, Kaposi sarcoma. aStages 1–3 are subdivided into slow (A) 
or rapid (B) KS progression. Rapid progression is defined as an 
increase in the number or total surface area of KS lesions over 
3 months149.
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are exceptions to this, such as in Uganda171). Formally 
proving the clinical benefits of early detection of KS 
experimentally would be time consuming and costly. In 
addition, the areas where the evidence would be most 
useful (that is, in sub Saharan Africa) have the fewest 
resources to perform such studies. Therefore, individual 
practitioners and public health bodies must continue to 
make their own decisions on the utility of promoting 
early KS detection without gold standard evidence. 
Inattention to KS has likely resulted in very few policy 
groups or individual practitioners ever considering the 
benefits of early detection of the disease. Also unproved 
is whether patients diagnosed with the fewest number 
and size of lesions (that is, with the smallest biologi
cal involvement) have the best prognosis, although 
observational research suggests that this is the case172.

In sum, detecting KS early will require the involve
ment of medical practitioners and patients. Medical 
providers can identify early stage KS inexpensively by 
macroscopic examination of the oral cavity and com
plete examination of mucous membranes and skin. 
Although these examinations are neither time nor 
resource intensive, they are hindered by tight schedu ling 
in resource rich settings and by overwhelmed clinics, 
a lack of private space and cultural avoidance in many 
resource limited settings. Even if medical providers 
always examined patients for KS, it would not mean 
that affected patients seek appropriate medical care 
earlier. In particular, patients in resource limited set
tings are unlikely to recognize KS as a possibility when 
painless lesions appear on their skin. Indeed, a health 
carefacility based randomized trial of an intervention 
to improve early detection of KS failed to improve 

outcomes in Zimbabwe173. The use of traditional healers 
by patients with KS in resource limited settings may also 
delay early detection174. Thus, it is likely that the bene
fits of early KS detection will be realized only through 
community based public education campaigns. Efforts 
in this regard have started in Uganda175 but will require 
investment and scale up to achieve impact.

Prevention
No specific intervention is currently recommended 
in routine clinical practice to prevent KS. An anti 
herpesvirus agent, ganciclovir, decreased the incidence 
of KS among individuals with HIV infection treated for 
cytomegalovirus retinitis in a trial mostly conducted 
before the cART era87. However, routine use of this drug 
in patients with HIV infection (or other populations with 
KSHV infection) is not indicated because of its toxicity. 
Therefore, interventions aimed at evading HIV infection 
(including pre exposure prophylaxis)176, or suppressing 
HIV replication and maintaining the immune function 
of patients with HIV infection177, are currently the most 
practical ways to avoid developing KS. Avoidance of 
KSHV infection would also prevent KS, but there are 
no rigorously examined interventions for prevention 
of this infection, mainly because the specific routes of 
KSHV transmission are not understood. Saliva is the 
body fluid that most commonly harbours KSHV178 and is  
thus likely the most important conduit for transmission. 
Therefore, in resource rich settings, MSM (the group with  
the highest seroprevalence for KSHV infection)179,180 
should be counselled about the possible spread of KSHV 
through saliva181. Population based studies of MSM in 
California, however, indicate very little awareness of 
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Fig. 6 | Histopathology of KS. a | Haematoxylin and eosin (H&E) staining of a skin biopsy sample showing characteristic 
features of Kaposi sarcoma (KS) is shown. Note the presence of spindle cells replacing dermal collagen, vascular spaces 
containing red blood cells, extravasated red blood cells and haemosiderin in macrophages (that is, siderophages). 
The original magnification is 20× (left panel) and 60× (right panels). b | H&E staining showing sheets of spindle cells in a 
biopsy sample of a nodular KS lesion. Original magnification 60×. c | A biopsy sample of a patch- stage KS lesion, stained with 
H&E, which has a sparse cellular infiltrate with many inflammatory cells (seen as dark , small cells). Original magnification 
is 20×. d | Immunohistochemistry for KS herpesvirus (KSHV) latency- associated nuclear protein (L ANA) in a skin biopsy 
sample of patch- stage KS, in which cells with brown nuclei line vascular spaces. e | H&E staining of a nodular- stage KS lesion 
is shown at low power (4×), with a large nodule formed by swirling fascicles of spindle cells. Original magnification 20×.  
f | Immunohistochemistry for KSHV L ANA in an area of a nodular KS lesion biopsy sample, showing immunoreactivity 
indicated by brown staining with a characteristic punctate pattern in the nuclei of spindle cells. Original magnification 60×.
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KSHV182. Furthermore, the use of saliva as a lubricant in 
anal sexual practices concentrated among MSM could 
play a role in KSHV transmission183. Considering the 
avoidance of this practice should at least be part of an 
educational message to at risk populations. In Africa, 
non sexual horizontal transmission in childhood is the 
principal route of spread in the highest prevalence areas184, 
but children are exposed to saliva in many ways24 and a 
main form of exposure has not been identified. As such, 
there is currently no role for a broad recommendation  
to avoid saliva exposure in the general population.

Management
In patients with forms of KS in which immunosuppres
sion is potentially reversible, the first line approach is to 
bolster the immune system; for example, the treatment 
of HIV with cART in patients with AIDS related KS may 
cause regression of T0 tumours. Similarly, patients with 
iatrogenic KS may be treated by redu cing the level of 
immunosuppression or by changing the immunosup
pressive agents used, for example, by swapping calcineu
rin inhibitors for inhibitors of the PI3K–AKT–mTOR 
pathway, such as rapamycin. However, reducing immu
nosuppression in patients with iatrogenic KS may risk 
graft rejection. Treatments directed at the tumours are 
necessary in patients with AIDS related KS and iatro
genic KS in whom agents targeting the immune system 
are insufficient, and in patients with endemic KS, classic 
KS or KS in MSM without HIV infection. High quality 
evidence for the clinical management of KS is confined 
to the management of AIDS related KS; the clinical 
approach for treating patients with other forms of KS 
is generally based on small retrospective case series and 
clinician experience rather than trial data.

For example, prospectively designed phase II trials in 
classic KS are scarce, usually include few patients, do not 
use standardized objective methods to document response 
and are rarely prospectively randomized. Despite these 
shortcomings, the current treatment options for classic 
KS include the observation of patients with a limited 
number of asymptomatic lesions that do not impair func
tion; the management of symptoms from lowerextremity 
oedema with elastic compression stockings and various 
local and systemic tumourdirected therapies similar to 
those used for AIDSrelated KS (see below). Of note, the  
choice of tumourdirected therapies for treating patients 
with classic KS depends on the number and anatomic 
distribution of the lesions, the pace at which the disease 
is progressing and the severity of other comorbidities; 
comorbidities are often present in elderly individuals  
presenting with classic KS (reviewed in reF.185).

AIDS- related KS
Cytotoxic therapy. The clinical management of AIDS 
related KS is largely determined by clinical staging. 
Patients with T0 early stage disease should commence 
cART (if not already receiving this treatment for HIV), 
to which KS will often respond (that is, lesions will shrink 
by ≥50% in size and/or number) within 6–12 months. 
Indeed, up to 80% of patients with T0 stage KS that were 
not previously treated with cART will require no other 
treatment for KS than continued cART over 10 years146.

The management of T1 advanced stage or progres
sive AIDS related KS was established before effective 
cART was available and largely remains based on clini
cal trials from that time. Three sizeable randomized 
controlled trials conducted in the USA and the UK 
demonstrated the superiority of single agent liposomal 
anthracyclines for treating patients with advanced stage 
or progressive AIDS related KS compared with con
ventional combination chemotherapy186–188. The safety 
and tolerability of liposomal anthracyclines in patients 
on cART has since been established189,190. Only one 
study has directly compared the efficacy of liposomal 
daunorubicin (DaunoXome) and pegylated liposomal 
doxorubicin (Caelyx or Doxil) in treating advanced 
stage or disfiguring AIDS related KS; as this study was 
underpowered, there is insufficient evidence to favour 
one agent over the other191. Nonetheless, on the basis 
of patient response rates and durations and on toxicity 
profiles, liposomal anthracyclines are considered the 
standard first line chemotherapy for advanced AIDS 
related KS, and most clinicians favour liposomal doxo
rubicin over liposomal daunorubicin as it is more widely 
available and has a less frequent administration sched
ule. Over 80% of patients with advanced AIDSrelated 
KS have been reported to show tumour regression using 
the current approach of combining cART with liposo
mal doxorubicin189, although a minority of patients have 
anthracycline refractory KS or relapse soon after com
pleting chemotherapy and may be eligible for second 
line therapy. A few patients with AIDS related KS who 
are well established on cART and have an undetectable 
plasma HIV viral load and good CD4 cell counts still 
develop progressive or visceral KS192,193. These patients 
are generally treated with systemic chemotherapy using 
the same regimens.

Several phase II studies have demonstrated the effi
cacy of paclitaxel in treating patients with advancedstage  
AIDSrelated KS, including those with anthracycline 
refractory disease194–196. Although the only head 
tohead comparison of pegylated liposomal doxorubicin  
and paclitaxel in the treatment of advanced AIDS 
related KS showed no significant differences in response 
rate (P = 0.49), progression free survival (P = 0.66)  
or overall survival (P = 0.49), there was significantly 
greater neurotoxicity (P = 0.045) and alopecia (P < 0.001)  
in the paclitaxel arm, making paclitaxel a less attrac
tive first line treatment option than pegylated lipo
somal doxorubicin197. Thus, in high income settings, 
expensive liposomal anthracyclines are favoured for 
treating patients with AIDS related KS, and pacli
taxel, which is more affordable, is generally reserved 
for patients with recurrent or refractory AIDSrelated 
KS. In low income and middleincome settings, how
ever, paclitaxel is becoming more widely available at  
a reasonable cost and may be preferred as a first line 
regimen for treating patients with AIDS related KS 
(box 2). Finally, a study conducted primarily in sub 
Saharan Africa, where liposomal anthracyclines are  
generally unaffordable, showed that a routinely used 
combination of bleomycin and vincristine was infe
rior to paclitaxel for treating patients with advanced  
AIDS related KS198.
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Pathogenesis- directed therapy. Two pathogenesis 
directed therapies, IFNα and alitretinoin (a retinoid 
receptor panagonist), are approved for AIDS related 
KS, but their use is largely historical. IFNα is a cytokine 
with direct antiproliferative and antiviral effects that 
can inhibit angiogenesis and modulate host cellular and 
humoral immune responses. The parenteral administra
tion of recombinant IFNα was studied extensively in the 
1980s and 1990s and induced regression of AIDS related 
KS, particularly when combined with single inhibitors 
of HIV1 nucleotide reverse transcriptase199. Although 
approved for AIDS related KS treatment by various 
regulatory authorities in resource rich countries, it is 
now rarely used owing to the availability of alternative 
agents that are more easily administered and have more 
favourable adverse event profiles. Topical alitretinoin 
gel200,201 is thought to inhibit cell proliferation and pro
mote cellular differentiation, and it induces the apoptosis 
of KSinfected cells in vitro.

Our growing understanding of KS pathogenesis has 
suggested multiple potential treatment targets for this 
disease, although none of the agents directed at these 
targets have yet been approved for treating patients. 
Nevertheless, the following treatments have shown  
promise in small clinical trials: imatinib, which inhib
its tyrosine kinasemediated transmembrane receptor  
signalling to prevent KS cell proliferation and angio
genesis202; bevacizumab, a monoclonal antibody against 
VEGF, an angiogenic growth factor that is highly  
expressed in KS lesions203; IL12, a cytokine that enhances 
type 1 immune responses, mediates anti angiogenic 
effects and downregulates vGPCR activity204; immuno
modulatory imide drugs, including thalidomide, 
lenalidomide and pomali domide, all of which pos
sess antiinflammatory, antiangiogenic and immuno
modulatory properties205,206; proteasome inhibitors, such 
as bortezomib207, which may promote the KSHV lytic cycle  
and/or inhibit NFκB signalling; inhibitors of the 
constitutively activated PI3K–AKT–TOR pathway,  
such as rapamycin, which have activity against iatrog enic 

and AIDSrelated KS73,74; and agents such as timolol and  
propranolol that inhibit autocrine βadrenergic 
receptormediated signalling (through which KSHV 
usually drives the proliferation of transformed cells  
and represses the expression of viral lytic genes)208.

KS immune reconstitution inflammatory syndrome.  
KS immune reconstitution inflammatory syndrome 
(KSIRIS) refers to the clinical worsening of existing 
KS or, less often, to the development or ‘unmasking’ of 
previously undiagnosed KS, following cARTmediated  
reconstitution of the immune system. Estimates of 
KS IRIS frequency range from <10% to nearly 40% 
depending on the precise case definition applied, the 
case detection approach and the clinical setting209–211. 
Moreover, there is no standard for distinguishing KS 
progression as an immune reconstitution associated 
event from the natural history of KS. Most current defi
nitions of KS IRIS include evidence of progressive KS 
within 12 weeks of initiating cART in parallel with the 
suppression of HIV RNA levels by ≥0.5–1 log10 and/or an 
increase in CD4 T cell counts by at least 50 cells µl–1 com
pared with pre cART levels; however, these definitions 
do not specify that ‘inflammatory’ characteristics of KS  
progression must be present. There is evidence that 
KSIRIS occurs more frequently in sub Saharan Africa 
than in the UK210; is more common among persons with 
T1 stage KS, high plasma HIV1 RNA levels and detect
able plasma KSHV DNA levels (than in patients with  
T0 stage KS, low plasma HIV1 RNA levels and undetect
able plasma KSHV DNA levels); and is less likely to be 
diagnosed among individuals receiving concomitant 
KSspecific chemotherapy and cART210,212.

There is no standard approach for managing KSIRIS. 
In some cases, KS progression subsides and may reverse 
without additional treatment and without stopping 
cART. In other cases, immediate addition of chemo
therapy to cART may be lifesaving and has been associ
ated with improved patient survival210. Of note, KS IRIS, 
unlike other manifestations of immune reconstitution, 
may be exacerbated by the addition of corticoster
oids213, which should be avoided. Similar progression or 
unmasking of KS may occur following the treatment of 
KSHV associated MCD with the monoclonal antibody 
rituximab214, even if the patients are on cART.

Quality of life
Many physical and psychosocial problems associ
ated with KS negatively influence QOL. For example, 
although gastrointestinal KS lesions are often asympto
matic, some may cause pain, bleeding, difficulty with 
feeding, diarrhoea, intestinal obstruction, malabsorp
tion and weight loss. Pain, severe oedema and cellulitis 
can accompany ulcerated skin lesions, and oedema can 
also be present in the absence of skin lesions. Oedema 
of the lower extremities may impede or prevent ambula
tion, as can oedema of the external genitalia, which may 
also obstruct urination. Facial and periorbital oedema 
is disfiguring and, in extreme cases, may obstruct 
vision. Pulmonary lesions and effusions may be associ
ated with dyspnoea, cough, haemoptysis and restricted 
activity. Skin lesions, particularly those on the face that 

Box 2 | Treating AIDS- related KS in resource- limited settings

Although most research on the optimal management of AIDS- related Kaposi sarcoma 
(KS) has been conducted in high- income countries, the majority of individuals 
developing KS worldwide, particularly in its most advanced, aggressive forms, reside in 
low- income and lower- middle-income countries (primarily in sub- Saharan Africa). The 
rate at which AIDS- related KS responds to combination antiretroviral therapy (cART) 
alone is likely to be lower in low- resource settings, partly owing to constrained access 
to cancer care. In addition, the natural history of both AIDS- related KS and endemic KS, 
and the success of treating it, may be worsened by concurrent illnesses (for example, 
infections and malnutrition).

On a positive note, access to treatment in low- income and lower- middle-income 
countries is rapidly evolving, and the availability of affordable, essential chemotherapy 
drugs through generic manufacturers and donors is growing. The US National 
Comprehensive Cancer Network (NCCN), as part of a joint project with the African 
Cancer Coalition (ACC), the American Cancer Society (ACS) and the Clinton Health 
Access Initiative (CHAI), has recently adapted the NCCN guidelines to create guidelines 
for cancer in sub- Saharan Africa254. These guidelines represent both the optimal care 
that these countries aspire to provide and pragmatic approaches that provide effective 
treatment options for resource- constrained settings. These guidelines will likely be 
informed and modified in the future by ongoing research into the optimal treatment of 
AIDS- related KS by international clinical trials groups.
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are hard to camouflage but also those on the torso and 
extremities, may lead to self imposed social isolation, 
ostracism by others and psychological distress. Although 
many of these problems have most commonly been asso
ciated with AIDS related KS, they may occur with all  
epidemiological forms of the disease.

Given that current treatments for KS are not curative, 
symptom palliation is often a major objective of KS ther
apy. In one study investigating preference techniques to 
value the potential health gains from different KS treat
ments215, 44% of respondents rated the presence of cuta
neous lesions on the face and trunk (even in the absence 
of visceral involvement or oedema) as equivalent to death 
and indicated that fairly modest treatment effects greatly 
improved QOL. A number of studies have measured 
changes in QOL during the treatment of AIDS related 
KS195,197,216–218. However, the methods used to assess 
QOL, including assessments of both general health and 
KS specific signs and symptoms, have been inconsist
ent, as have the specific treatment interventions used, the 
prior KS treatment status of participants and the avail
ability and use of antiretro viral therapy. Nonetheless, 
there is essentially unanimous agreement that chemo
therapy for KS often improves QOL, despite the side 
effects of treatment. In particular, KS associated pain 
and oedema were most likely to be positively influenced 
by chemotherapy195,197,216–218. Although improved QOL 
measures sometimes positively correlated with a meas
ured objective response of KS to treatment (for exam
ple, shrinkage of the tumour by ≥50%)216,217, symptom 
palliation occurred in many individuals in the absence 
of the objective response197,216. These findings highlight 
the relevance of integrating measurements of QOL and 
patient bene fit into the evaluation of the therapeutic effi
cacy of treatments for KS219. Cases of highly symptomatic 
AIDSrelated KS have been reduced in high resource 
settings but remain common in resource constrained 
settings that account for the majority of new cases 
worldwide. Thus, using QOL as an integrated measure 
of therapeutic effectiveness in evaluating KS treatments 
in resource constrained settings remains highly relevant.

Outlook
Basic science and pathophysiology
KSHV encodes viral proteins that are observed in KS 
lesions, where they can induce cellular changes by acti
vating cellular pathways. Additionally, some KSHV pro
teins (for example vGPCR, vFLIP and LANA) may drive 
KS pathogenesis, thus representing potential therapeutic 
targets in KS; inhibitors of these proteins remain at the 
experimental stage and, even if they do become clinically 
available, this may take ≥10 years.

The cellular oncogenome of KS is poorly understood, 
and it is unclear whether KS is a polyclonal or mono
clonal disease entity. In general terms, cancers originate 
from a single cell, therefore monoclonality is a feature 
of neoplastic diseases, whereas an inflammatory condi
tion would arise from a number of different cells react
ing to a stimulus and be polyclonal in origin. Indeed, 
most evidence suggests that KS can be both entities, 
sometimes being polyclonal220 with other cases showing 
monoclonality221,222. These molecular findings may be 

consistent with some cases behaving more aggressively 
than others, although a correlation of clonality with clin
ical behaviour has not been documented. This scenario 
is not unprecedented for a herpesvirus driven disease, as 
Epstein–Barr virusassociated post transplant lympho
proliferative disorders range from reactive polyclonal 
proliferations to true lymphomas223. Cellular genetic 
alterations — namely, in the cancer related genes TP53 
and KRAS — have been reported only in a few cases of 
KS224–226. Current genomic techniques and biocomputa
tional methods in cohorts with annotated clinical infor
mation should provide a much broader understanding 
of the pathophysiology of KS, beyond KSHV infection, 
in the coming years.

Clinical presentation
One of the difficulties in understanding KS is that its 
clinical presentation varies widely. Some patients with 
KS have indolent disease, which has led some researchers 
to conclude that KS may not result from a transforma
tion event that leads to autonomously growing tumour 
cells; instead, it might represent a hyperplastic prolifer
ative disease due to ongoing viral stimulation that drives 
angiogenesis and local and systemic inflammation227,228. 
By contrast, however, some patients with KS have aggres
sive, disseminated disease, with malignant behaviour. 
This heterogeneity is also seen at the histo logical level, 
where lesions that are largely composed of inflamma
tory infiltrates, including lymphocytes, plasma cells and 
macrophages or sheets of spindle cells, can be observed.  
The proportion of KSHV infected cells also varies among 
lesions in patients with KS, ranging from a few to the 
majority of cells being positive for KSHV. The clinical or 
prognostic implication of these histo logical differences 
is not clear, and correlative analysis of the proportion  
of infected cells with the clinical features present is  
ongoing in AIDS Malignancy Consortium trials for KS.

Prevention
The prevention of KS should be possible given that it is an 
infectious disease. An HIV vaccine would eliminate AIDS 
related KS, and a KSHV vaccine would eliminate all cases 
of KS. Although progress is being made towards devel
oping a KSHV vaccine (for example, by bettering our 
understanding of T cell responses to KSHV in humans32 
and testing, in mice, virus like particles containing the 
gpK8.1, gB and gH–gL KSHV glycoproteins that are 
involved in virus entry into host cells229), a vaccine for use 
in humans is unlikely to be available in the near future. 
The development of a KSHV vaccine has been hampered 
by specific biological features of KSHV, such as latency 
and its ability to evade the host immune system230.

In addition, only a fraction of individuals infected 
with both HIV and KSHV develop KS38, suggesting that 
there are other causal factors in the aetiology of KS. The 
importance of an inflammatory milieu in the develop
ment of KS has received attention both at an anec dotal 
clinical macroscopic level231,232 and in basic science 
investigation233. Moreover, emerging evidence suggests 
that biomarkers of inflammation are associated with 
the occurrence of KS in human studies. For example, a 
higher ratio of plasma kynurenine to tryptophan levels, 
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reflective of tryptophan metabolism, is associated with 
lower occurrence of KS234. Another study showed that 
CXCL10 (also known as IP10), IL1 receptor type 2, solu
ble form (sIL1RII), IL2 receptor α (IL2RA) and CCL3 
were markedly associated with KS after adjustment for  
age and smoking status235. Understanding which of these 
biomarkers are causal (and hence candidates for inter
vention), rather than markers of biological processes, is at  
the forefront of translational research.

Finally, as we increase our understanding of the risk 
factors for cART resistant KS and for the development 
of KS IRIS, particularly in low resource environments, 
it may be possible to devise pre emptive strategies, such 
as early initiation of KS specific therapy, to prevent these 
adverse outcomes.

Management
KS management in the near term is likely to capitalize on 
the growing understanding of KS pathogenesis, which 
has already provided a rationale for targeted treatments 
that have induced the regression of KS lesions and 
amelio rated disease symptoms. In addition to conduct
ing larger efficacy trials of these drugs, especially orally 
bioavailable agents such as pomalidomide and borte
zomib, there is a strong rationale to assess their efficacy 
as part of combination therapies that target multiple 
steps in KS development and progression and as adjuncts 
to established chemotherapy regimens. However, it has 
been difficult to mount large scale efficacy trials of 
promising agents and drug combinations because of the 
declining incidence of AIDS related KS in high resource 
settings and the limited cancer research infrastructure 
in lowerresource settings where AIDS related KS is  
still common.

Other novel therapeutic approaches being studied for 
treating other neoplasms — in particular, the blockade 
of inhi bitory receptors (for example, programmed cell 
death protein 1 (PD1), programmed cell death 1 ligand 1 
(PDL1) and cytotoxic T lymphocyte protein 4 (CTLA4)) 
that might otherwise prevent effective immune 
responses to virally induced neoplasms236 — are being 
explored in KS. Indeed, PDL1 and PD1 are expressed 
in HIV positive KS tissue samples237, including samples 
derived from patients on cART with well controlled 
HIV and high CD4 cell counts238. Pilot studies of the 
use of immune checkpoint inhibitors in KS have been 
promising both in patients with HIV239 and in patients 
who are HIV seronegative240.

Finally, of note, targeted approaches that utilize 
orally bioavailable drugs with acceptable safety pro
files and that can be easily integrated into outpatient 
treatment regimens may be studied more intensively in 
high incidence, low resource settings than intravenous 
chemotherapy and radiation therapy.

Integration
KS is a complex and heterogeneous disease, and, although 
the discovery of KSHV as its causal agent 24 years  
ago led to an improved understanding of its transmis
sion and pathogenesis, much remains unclear. We do 
now have both epidemiologic and molecular evidence of 
caus ality, and it is clear that KSHV infection is necessary, 
although not sufficient, for KS to develop. However, a 
number of questions that have been speculated upon, 
but not fully experimentally validated, are outstanding. 
For example, it is unclear why KSHV is more highly 
seroprevalent in sub Saharan Africa; one possible expla
nation for this is a greater propensity to share saliva in 
this area (see above), but genetic, nutritional and other 
factors may also contribute. Another interesting and out
standing question is why KS is more common in patients 
living near volcanoes than in patients living elsewhere241. 
It has been proposed that localized immunodeficiency 
in the skin favours the development of KS, and this may 
be induced in the extremities by exposure to volcanic 
soil leads242 and by the use of topical steroids243. The 
much higher incidence of KS in men than in women 
remains poorly understood. A possible explanation is 
that there are gender disparities in the immune response 
to KSHV and that disease susceptibility is related to sex 
steroid hormones244.

Clinically there have been major strides in the man
agement of KS, in particular with respect to AIDS related 
KS in line with the improved control of HIV infection; 
AIDS related KS incidence rates have declined with good 
HIV control, and effectively treating patients with KS 
with cART improves the outcome of early KS. However, 
the current treatment of AIDS related KS that does not 
respond to HIV control is largely based on chemother
apy. More targeted biological treatments, such as those 
directly inhibiting vascular proliferation, or the targeting 
of latent viral proteins such as vFLIP, are only just being 
tested in experimental models or in clinical trials, and it 
is not clear whether any of these will be curative.

A preventive approach would be ideal to greatly reduc
ing the global incidence of KS, and studies are underway 
to achieve this. In the meantime, as with other cancers 
in which a personalized, targeted approach has been 
used to tailor therapy, researchers will need to determine 
whether distinctive biomarkers or genetic features can 
inform clinicians on the best therapeutic interventions 
for KS. In contrast to most other cancers, the geographic 
location of the majority of KS patients in low resource 
countries makes these studies challenging. Nevertheless, 
our increased understanding of the pathobiology of  
KS and our increased armamentarium of targeted agents  
and immunomodulators makes this an achievable goal.
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